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P O S S I B L E  E F F E C T  OF V A R I A T I O N  IN T H E  I N T E R N A L  E N E R G Y  OF T H E  F R E E  

S U R F A C E  OF A T H I N  L I Q U I D  L A Y E R  ON ITS W A V Y  F L O W  

B. E. Zakhvataev  UDC 532.516:536.25 

A formally possible mechanism is considered for the development of longwave perturbations of 
flow of a thin layer of a heat-conducting viscous liquid with a free boundary, whose characteristic 
feature is that the Marangoni stresses occurring at the boundary are induced by variations in 
the internal energy of the interface. The effect of surface internal energy fluctuations on the 
layer flow in the approximation considered is of a dispersive character, and, in particular, it 
can facilitate regularization of wave regimes. 

I n t r o d u c t i o n .  Recently, some interest has been expressed in problems related to the effect of the 
inteffacial internal energy in liquid-liquid and liquid-gas systems on the temperature and velocity fields in 
the vicinity of the interface (see, for example, [1]). In most studies of thermocapillary phenomena, the effects 
related to the variation in the surface internal energy are considered insignificant. However, as calculations 
show [I], for most liquids, including water, at rather high temperatures and for low-viscosity liquids, these 
effects may have a substantial impact on dynamics in the vicinity of the interface. 

A liquid film layer is a physical system that seems to be quite convenient for both experimental and 
theoretical studies of this type of phenomenon. 

In the present paper, we consider a possible physical mechanism for the influence of variations in the 
surface internal energy on the temperature field in the vicinity of the free boundary of a liquid film and, 
ultimately, on the formation of Marangoni stresses and a velocity field. The effects due to thermal expansion 
of the liquid are not taken into account since the layer thickness is assumed to be rather small. 

The flow of a film liquid layer with a free boundary has long been thoroughly studied [2-5], in particular, 
in relation to various practical applications. Film flows are widely used in highly efficient mass-transfer devices 
and are the basis of some thermal phenomena and chemical-technological processes (absorption, desorption, 
cooling, condensation, etc.) [6]. The character of wavy regimes in a film layer can substantially affect the rate 
of transfer processes through the interface [4, 7], which makes the search for physical factors and effective 
methods of controlling flow dynamics important. At the same time, film flows are among the simplest, most 
accessible, and expressive physical systems that illustrate various nonlinear phenomena. 

Our analysis is based on a widely known simplified mathematical model that describes weakly nonlinear 
wavy regimes of film flow - -  the Kuramoto-Sivashinskii equation (KS-model) [8-10]: 

0 0 02 04 
O--~ H + H-~x H + -~x2 H + -~x4 H = O. 

Here t, z, and H are the scaled time, longitudinal coordinate, and perturbation of the interface, respectively. 
This model applies for high surface tension of the film free boundary, rather large longitudinal spatial scale of 
perturbations in the thin layer, and Reynolds numbers of order O(1). Although the solution of this equation 
does not give a satisfactory quantitative description of the wavy flows observed in experiments, there is 
qualitative agreement for waves of small amplitudes. 
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In the present paper, the physical mechanism used as the basis of the KS-flow model for a thin layer 
of a viscous liquid is considered with allowance for some thermocapillary effects. The method of multiscale 
tensions within the limit of asymptotically large effective surface tension and Marangoni number reduces 
the initial mathematical model to the following evolution equation for the weakly linear dynamics of a free 
boundary, which is a combination of the Korteweg-de Vries and Kuramoto-Sivashinskii equations: 

0 ~ H 02 03 04 
O-t H § H Ox § H § D-~xa H § 4 H=O" 

The term DH~zz in this equation is due to the effect of the internal energy of the film free surface on flow 
dynamics. 

Among the most important features of the periodic solutions of the Kuramoto-Sivashinskii equation 
is the property that the development of any initial longwave perturbation is of an irregular character: the 
corresponding numerical solutions are chaotic oscillations in time in the presence of coherent spatial structures 
[9, 11-13]. According to the assumption of [9], the chaotic nature of the longwave periodic solutions of the 
Kuramoto-Sivashinskii equations can be responsible for the irregular (IR) behavior of film layers observed in 
experiments. As shown by numerical studies of the Kuramoto-Sivashinskii and Korteweg-de Vries equations 
[14-16], the term with the third derivative exerts a regularizing influence on dynamics. The initial data, which 
develop chaotically for D = 0, evolve, for large values of the coefficient D, to the limiting regime with a regular 
sequence of stationary waves of the same shape. This suggests that the thermocapillary mechanism considered 
in the present paper can exert a regularizing influence on the behavior of the film layer. In addition, some 
other possibilities of affecting the dynamics of film flow arise. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  Let us give the initial mathematical model in invariant form. We 
assume that the behavior of a viscous heat-conducting liquid in a region f~ bounded by a surface S (solid 
wall) and a free surface P adjacent to a gaseous phase is described by the following system of equations and 
conditions [17]. 

In the region f~, the N.avier-Stokes and incompressibility equa~ffns and the Fourier law are satisfied: 
- ~ = - - l - V p + u A v + f * ,  d i v v = 0 ,  ~ - [ = ~ A 0 .  

P 
Here v (x , t )  is the velocity vector, p(x, t) is the pressure, 0(x, t) is the temperature, x E R a is the radius- 
vector, t is time, f* is the acceleration of gravity, p, u, and X are the constant density, kinematic viscosity, and 
thermal diffusivity of the liquid, respectively, and ~7, div, and A are the gradient, divergence, and Laplacian 
operators, respectively. 

On the free boundary (x G F) there are [17] 

- -  the kinematic condition of nonpenetration v �9 n = V,, 

- -  the stress-balance condition P �9 n + f n  = 2aHn  + ~Tr a, 
da d2 a dO 

- -  the energy-transfer condition (kVO - kgvog) �9 n = 0 ~ divr v + 0 dO--- i d-t" 

Here n is a unity vector normal to the surface F, which is outer with respect to the region fl, V= is the 
displacement velocity of the surface F in the direction of the normal n, Vr  =- V - n ( n -  V), divr v _= 
V.  v - n ( (n .  V)v) ,  P is the stress tensor, H is the mean curvature of the surface F, k is the constant thermal 
conductivity of the liquid, ~ > 0 is the surface-tension coefficient on the free boundary F, and ~ ,  0 g, and 
kg are the pressure, temperature, and constant thermal conductivity of the gaseous phase, respectively. The 
functions pg and 0 g are assumed to be known. 

The energy-transfer condition means that the heat flux jump in the normal direction to the surface F 
is compensated by the variation in the internal energy of this surface due to variations in the interface area 
and temperature [17]. 

Finally, we assume that the standard conditions of attachment and constant temperature are satisfied 
on the solid wall S. 

We consider a thin film layer of a viscous heat-conducting incompressible liquid flowing under gravity 
along the outer surface of a vertical cylindrical pipe of radius a*. Constant temperature 0~ is maintained 
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Fig. 1 

along the pipe. It is assumed that the temperature dependence of the surface-tension coefficient is linear [this 
is a good approximation of real dependences for many liquids (water, solutions of organic substances, etc)] in 
certain ranges of temperature variation [18]): ~r = ~r(~ - ae(0- 0(~ where ~r(~ = const is the surface tension 
at temperature 0 (0) and a~ = const is a temperature coefficient; below, we assume that 0(0) = 0~. 

Let (r, ~o, z) be cylindrical coordinates (radial, angular, and axial coordinates and the z axis is opposite 
to the gravity force) and (u, v, w) be the velocity field. 

As the basic process, we examine the laminar isothermal flow of the layer in the region fl0 = {a* ~< 
r ~< a* + h~, - r  ~< ~ ~< ~r, -oo  < z < oo} (h~ = const). The scale coefficients for the spatial variables, 
velocity, time, pressure, and temperature are h~, w* = f*h~2/2v,  h l /w*  , pw .2, and 0~, respectively (f* is the 
acceleration of gravity). We assume that a*/h~ = a and study the dimensionless problem. The general view 
of the system considered is shown schematically in Fig.1. 

We write the initial mathematical model in the cylindrical coordinates. In the region {a < r < a + 
h ( t ,  ~o, z), -Tr ~< ~o <~ ~r, - o o  < z < oo}, the following conditions must be satisfied: 

v v 2 1 (  1 1 2 r~ ) 
ut + uur + -- u e + w u z  - - = - - p r  + Urr Uz~ - - -  "~ V~ ; 

r . r  Ree + ~ u~,~, + + r u, - (i.i) 

v t + u V r + - V  e + w v z + w = - r p e +  ~Vrr - ~ v e e  r ~ r-ff); r r Ree + + vz~ + - vr + u~, - (1.2) 

v ~ e (  1 1 ) 2 w~ + UWr + - w~ + ww~ = - P z  + Wrr + -~ We~, + W~z + -- Wr -- ~ "  (1.3) 
r r Re ' 

u 1 
ur + - + -v~  +w~ = 0; (1.4) 

7" r 1( 1) 
at + uOr + -r 0~, + wOz = Or, + - ~  e ~  + Ozz + -r Or . (1.5) 

The boundary conditions have the form 

u = 0 ,  v = 0 ,  w = 0 ,  0 = 1  for r = a .  (1.6) 

For r = a + h(t,qo, z), the following relations hold: 
�9 The balance condition for normal stresses 

( 1 2 2)-1 ( l h  (1 1 )  
- R e ( p - ~ ) + 2  l + ~ h e + h  u , - -  ~ r u e + v r - - v  - h ~ ( w ~ + u ~ )  

T r 

1 ( 1 ) l . ( i v  1 ) ) ( r ~ + r  hehz V ~ + r W e  + - ~  he r e + r U  +h2zwz = ( W e + M n ( O - 1 ) )  - h~ 

__ 1 2 ( r- ~ 2 ) ) (  12 2z)-3/2 l ( l + h 2 ~ ) + ~ T h e e ( 1  +h2~) - -~heh~h~ ' z  +h~.  1+  h l + ~ h  e + h  ; (1.7) 



�9 The  balance condition for tangential stresses 

 1+7h-+ + 7 Or r 
l ) 2h ( v +l )) (! 1 ) 

. . . . .  u = M n  Orh~+-#~ ; (1.8) 
F r r r 

(1 + + + + , . )  (; , + v . -  ; 

1 1 w +rh~(V,  + r  ~) -2hzw, )  = Mn(Orhz +Oz); (1.9) 

�9 The  energy-transfer condition 

2\ -1]2 / k g 
- - -  0 9 -  h~O~, ) 1 h,) ~Or 1 1 _ h,Ogz) 

= E 0 1 + h 2 + h u,. - -~ h~u~ - h , u ,  + -~ h~v - -r h~v,  

1 l h~h,vz 1 h2u_h,wr + 1 h2zwz) (1.10) +-~ h~v~2 + + ~ ~ h~h,w~ + ; 

�9 The  kinematic nonpenetra t ion condition 

u = ht + v h~ + whz. (1.11) 
r 

Here Re = w*h~/u, Pe = w*h~/x, We = a(~ Mn = -mO*s/(puw*), E = zew*/k, and p-q and 0g are 
specified functions. 

The  basic laminar flow is defined as follows: 

u 0 = 0 ,  v 0 = 0 ,  w 0 = ( r  2 - a 2 ) / 2 - ( 1 + a )  2In(r /a) ,  p 0 = c o n s t ,  0 0 = 1 ,  h 0 = l .  (1.12) 

Our task is to s tudy the development of perturbat ions for the basic state (1.12) at the weakly nonlinear 
stage of evolution of the fluctuations. 

2. D e r i v a t i o n  of  t h e  A m p l i t u d e  E q u a t i o n .  In this section, reducing the initial problem by the 
method  of multiscale tensions [8, 10] we derive the evolution equation describing the longwave regimes on the 
free surface of the layer. 

C h o i c e  of  S p a t i a l  a n d  T i m e  Scales .  In [10], the choice of scales for the dependent  and independent 
variables was based on the following considerations. The  linear dispersion relation obtained from analysis of 
the linear stability of flow of a viscous liquid layer down a vertical plane wall ignoring thermocapillary effects 
leads to the following est imates [10] for unsteady perturbat ion of the form exp()~t + ink + ilO) (~ and k are 
the horizontal and vertical coordinates): 

n , ~ l ~ W e  -1/2, R e a l ( A ) , ~ W e  -1, [m (A) ,--, We -1/2 for W e > > l ,  R e - - O ( 1 ) .  (2.1) 

We assume that  the longitudinal spatial scale of the flow in cylindrical geometry agrees with estimate 
(2.1). From (2.1) it also follows that  the characteristic spatial scale of transverse per turbat ion 2~r/l ,-~ We 1/2. 
The  wall curvature is assumed to exert the strongest influence on the flow properties when the number of 
transverse waves O(al) is finite. Hence, we obtain a ,,, We x/2. 

Considering problem (1.1)-(1.11) linearized on solution (1.12) and expanding the perturbations and 
the quant i ty  ~ in a series in a small parameter  - -  the wave number  n - -  we find that  estimates (2.1) remain 
the same if Mn = O(Wel/2), Pe = O(1), and E = O(1). 

Next we consider secondary flows whose characteristic spatial scales in the longitudinal and transverse 
directions are of order O(e-1) ,  0 < r << 1 (e is the smallness parameter);  in this case, We = O(e-2).  



We set [10] 

0 cO ~20 
X = r - a ,  Z = ~ z ,  a = ~ a ,  Y = a ~ o  ( -aTr<,Y<,a~r) ,  ~ i - - - , - ~ r + O T ;  (2.2) 

u =  y]E'~U,~(X,Y,Z,r ,T) ,  w = w o ( X , r  Y]~r  
n = l  n = l  

P = Po(e) + ~_, d ' P , ( X ,  Y, Z, r, T), (2.3) 
71=1 

O= 1 + ~_, e " O , ( X , Y , Z , r , T ) ,  h =  1 + ~ e " g , ( z , Y , r , T ) .  
n = l  n = l  

Note that wo(X,e) = X 2 - 2X - r - X 2 + X)/ot + O(~2). 
We assume that the orders of magnitude of the dimensionless parameters of the problem are defined 

by 

W e =  O(e-2), Mn = O(r R e =  O(1), P e =  O(1), E = O(1). (2.4) 

We denote Mn = Mn e and We = We e2. 
Inf luence of T e m p e r a t u r e  Pe r tu rba t ions  in the  Gas Phase.  In most cases, the thermal diffusivity 

of gases is an order of magnitude lower than that for liquids [18], and, hence, it is quite natural to assume 
that kg/k <~ O(~). We set 

09 = 1 + y ]  d ' O ~ ( X , Y , Z , r , T ) ,  X >i 1. 
n = l  

The characteristic spatial scale in the radial direction in the region occupied by the gas phase coincides 
with the scales in the longitudinal and transverse directions. Therefore, in the region adjacent to the film 
layer (X t> 1), we have O/OX = O(e). With allowance for the above-mentioned assumptions and remarks, in 
the case considered, the temperature perturbation in the gas phase has little effect on flow dynamics in the 
film layer. 

At the same time, one can believe that temperature fluctuations in the region adjacent to the thin 
layer are suppressed by the isothermal gas flow. 

Sequence  of Approx ima t ion  Prob lems .  Substituting (2.2) and (2.3) into (1.1)-(1.11) and taking 
into account (2.4), we obtain the following sequence of approximation problems. 

In the first order, 

OP1 

'1 = - ~  

2H~ + 

1 02 U1 02 VI 1 02 W1 
0--X'- Re OX 2' OX 2 =0, Re O X  ------T =2(X-1)UI'  

OUx 0201 
OX =0,  OX-----T = O for 0 < X < I ;  

U1 = V I = W 1  =O1 = 0  for 

W e ( 1  ) 2 0U1 
Re ~ H1 + V2 HI + R--~ O----X' 

OWl = ~-~ 001 OO1 = E OU1 
o x  o z  ' o-7 -gY' 

X = 0 ;  

O V1 = ~nn 001 
OX OY ' 

U I = 0  for X = I .  

Here V 2 = 02/OY 2 + 02/OZ 2. Problem (2.5)-(2.7) has the solution 

We(  ) 
UI=O,  VI=O, W1 = - 2 H 1 X ,  O1 =0 ,  P1 = - R e  ~ ' H I + V 2 H 1  �9 

In the second order, Eqs. (1.2)-(1.6) and (1.8)-(1.11) have the form 

OP1 1 02V2 
-- O--'Y- + R e  O X ~ -- O, 

(2.5) 

(2.6) 

(2.7) 

(2.s) 
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OWl 1 OWl "~ , (2.9) 0r + 2(X - 1)Us + X(X - 2) OWa OP~ (05W2 1 
m o z  - o - - - Z + ~ \ ~ - ~ - + - - f f f f ]  

OU5 OWl 0202 
OX + OZ =0' OX 2 - 0  for 0 < X <  1; 

U2 = V2 = Ws = 02 = O for X = O; 
= ~ 005 OW5 002 005 OU5 

OY' O-'~ + 2H5 = Mn O---Z" O--X- - E ~-~, 
OV5 
OX 

(2.10) 

(2.11) 
OH1 OH1 

- - = U 2  for X = I .  
Or OZ 

Problem (2.9)-(2.11) with allowance for (2.8) has the solution 

H1 = HI(~,T), U2 = X 2 OH1 02 = 2EX OH1 
o~ ' or ' 

1 (12 OH1 _2OHI\ a2H1 
V 2 = - - ~ W e X ( X - 2 ) . ~  OY + V  --~-~-)+2MnEX 0r (2.12) 

(1 
W S =  

a ( X 00~ H1 + I  x , x -  2)H1 - 2XH5 + 2MnE 

where ( = Z + 2r. 
In the third order, the kinematic condition (1.11) has the form 

OH1 0112 OH1 10Hx OU5 
OT + ' - ~ ' + W l  0---(- 3~ 0r = V s + - ~ g l  ( X = I ) .  (2.13) 

This condition is the basis of the required evolution equation. The function Ua is determined from (1.4) 
and (1.6): 

"OUs OY2 0W2 
o--~ + ~ u2 + -ffY + o--7- 

Therefore, with allowance for (2.12), we have 

=0,  v3(0) =0.  

U3 = 2 (1X3 1X2) OHI ( 1  5 1X4 2 2~02H1 - a  - --~--Re g6X - ~  + s X )  

1 - -  1 V4Hx ) + X2 OH2 MnEX2OaH1 MnEX 20aHx +2 We(3 X 3 -  X 2 ) ( ~  V2Hx + O( 0~ s O~OY 2" 

Then, (2.13) takes the form 

OH, 20H1 O H 1 8 0 2 H 1 7 _ ~ W ~ V 2 H  1 
OT 3~ 0( 4H1 ~ + Re'-0--~- + 33 

+MnE \ - - ~ -  + 0----~--5] + (  03H1 03H1 "~ ~WeV4H1 = 0. (2.14) 

For the rotationally symmetric case, 

OH,oT 3320H10~ 4H, --~OH' + ( 8  Re + 3-~ ~ )  02Hl~ + Mn E~0aHll+ -~ W'e 04H1 = 0.0---- U (2.15) 

Remarks  on the Physical Mechanism. Equation (2.14) coincides (with accuracy up to the term 
with the coefficient MnE) with the equation obtained in [10]. The new term reflects the influence of 
thermocapillary effects on the secondary regimes in the system under study. Conditions (2.11) express the main 
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feature of the physical mechanism that corresponds to the reduction considered. The departure of the interface 
from the equilibrium state changes its internal energy, thereby affecting the heat-flux perturbation through 
the interface. The temperature perturbation thus induced is conjugated with hydrodynamic perturbations 
in the process of balancing of tangential stresses on the free boundary. At the same time, perturbations of 
the velocity field are generated by pressure fluctuations, which, in turn, are induced by the deformation of 
the interface via the boundary condition of balance of normal stresses, which is intrinsic to hydrodynamic 
problems of this type. 

A similar problem was studied in [19]. Allowance for thermocapillary effects in describing the behavior 
of the interface in two-phase flow of viscous immiscible liquids along a cylindrical pipe in the case where 
the thickness of the layer adjacent to the cylindrical wall is asymptotically small mad a number of other 
requirements are satisfied also leads to an evolution equation of the form (2.15) where the term with the third 
derivative is due to thermocapillary factors. 

Wave F low in P l a n e  G e o m e t r y .  A thin-layer flow along a vertical plane wall is considered similarly. 
Let r and z be Cartesian coordinates (we confine ourselves to the two-dimensional case) and the film layer 
flow freely under gravity down the plane surface r = a = const; the perturbed interface is defined by the 
equation r = a + h(z , t ) .  In (1.1)-(1.11), we set v = 0 and 0/0~o = 0. In the initial mathematical model, Eqs. 
(1.1)-(1.5) are changed in an obvious manner. Now, condition (1.7) has the form 

2 --1 - R e ( p - / ~ )  + 2(1 + hz) (u, - hz(wr + u , )  + h2w,) = (We+ M n ( 0 -  1))hz,(1 + h2) -3/2, 

r = a + h(z,  t). 

The remaining boundary conditions are not changed. The basic solution has the form u0 = 0, w0 = r 2 - 2r, 
p0 =const ,  00 = 1, and h = 1. 

An analysis similar to the one performed above, with the same conditions for the orders of magnitude 
of the dimensionless parameters of the problem, leads to the same chain of formulas as that in the case of 
cylindrical geometry, in which, formally, one should set a = co. Consequently, the final amplitude equation 
has the form (2.15) but the terms - (2 /3a )Hl r  and (1/3a 2) WeHIr162 should be omitted. 

Wal l -Curvature  Effect  on the  Regu lar i ty  of  S e c o n d a r y  Mot ions .  As is known, the curvature 
of a wall down which a liquid flows can have a regularizing influence on the film-layer flow. We examine this 
problem in a linear approximation. Analysis of the dispersive relation of Eq. (2.14) shows [10] that the lower 
the wall curvature, the larger the number of linearly unstable harmonics with a high angular frequency. The 
thermocapillary effects considered have no effect on the reasoning in [10] because of their purely dispersive 
character. 

3. Format ion  of  Quas i s t a t iona ry  Regu la r i zed  Regimes .  We confine ourselves to the rotationally 
symmetric case. By substituting variables, we reduce Eq. (2.15) to the form 

Ht + 2 Q H H z  + UH~x + D H ~  + SHz~xx = 0 (V > 0, S > 0). (3.1) 

The linear dispersive relation of Eq. (3.1) for the harmonic oc exp (At+inx)  has the form A = Un2+iDn  3 - S n  4. 
Hence, the term with the second derivative is due to destabilizing effects, the term with the third derivative 
to dispersive effects, and the term with the fourth derivative to dissipative effects. Relation (3.1) is one of the 
simplest models of weakly nonlinear dissipative processes in systems with dispersive and destabilizing factors. 
This equation is used for various problems, for example, in describing the hydrodynamics of film flows [20], in 
plasma physics, and in studies of modulations of the processes described by the generalized Landau-Ginzburg 
equation [21]. 

Let us give some known results of the numerical studies in [9, 11-16] of the general properties of 
L-periodic solutions described by Eq. (3.1) [H(t,0) = H(t,L)I. Below, it will be convenient to use the 
parameter # = ( L / 2 r ) ( U / S )  1/2 > 0, which reflects the level of instability of the equilibrium state and 
appears naturally when the problem considered is reduced to its canonical form. 

For D = 0, (3.1) is the Kuramoto-Sivashinskii equation, which is often mentioned as the simplest 
deterministic model of weak turbulence at interfaces and fronts [12]. For comparatively small values of the 
parameter #, regular solutions of either steady-state or oscillating character are observed, but with increase 



in the spatial period on the axis of the bifurcation parameter/~, spots of irregular behavior appear, and for 
sufficiently large values of #, distinct chaotic behavior is established (as attractors or quite long transition 
processes) [9, 12, 14]. These irregular regimes are chaotic oscillations in time with components of spatial 
coherence. 

When the value of # is large so that the dynamics of the Kuramoto--Sivashinskii equation is of a chaotic 
character, and the positive values of the coefficient D are fairly close to zero, stochastic behavior is observed. 
However, with an increase in D, the level of regularization increases sharply: one can observe sequences of 
solitary waves, and with the development of dispersive effects, the distances between individual pulses change 
in a more and more regular manner. Finally, for rather large values of the parameter D, a train of solitary 
waves with practically the same profiles and distances between neighboring maxima is formed after a transient 
process [14-16]. 

Thus, under the influence of dispersive effects, the irregular regimes of the Kuramoto-Sivashinskii 
equation become quasistationary regular. 

Under certain conditions, the limiting regimes of Eq. (3.1) established after transient unsteady processes 
(sequences of solitary waves) can be satisfactorily described by an asymptotic solution that is a superposition 
of stationary solitary waves with one maximum [HS(x - Vt  + r where H s -+ 0 as x --* 4-00] which interact 
with each other rather weakly [16, 22]. The profile of H s is determined numerically. In such a train of identical 
solitary waves, the distances between pulses can vary in both regular and irregular manners [16, 22]. 

Equation (3.1) also has other types of steady solutions H(x - Vt), which correspond qualitatively 
to the most important types of regular film flows: periodic regimes and sequences of solitary waves with 
several maxima. In the phase space (H, H',  H"), the latter correspond to nearly biasymptotic trajectories to a 
stationary point (0, 0, 0) that return cyclically to it and, in each cycle, make a few rotations about the second 
stationary point (V/Q, 0, 0) [22, 23]. 

Equation (3.1) can also describe regimes of the type of hydraulic jumps. In a special case, the 
corresponding exact solution (by analogy with the Kuramoto-Sivashinskii equation) [24] can be obtained. 
That is, the equation 

- V H  + QH 2 + UH' + DH" + S H "  = q =const (3.2) 

[H = g(~),  where ~ = x - Vt~ has a solution of the form 

g = a + btanh (a~) + ctanh 2 (a~) + dtanh s (a(). (3.3) 

Here 

a = ~ - ~ + - ~ 6 M ,  b = - - + ~ - - ~ 6 2  M, c = -  6M, 

if the conditions 
V2 /83520 3000 2 195 (3~0 =4(,T+--~-~--6 +-~-~64)$2~6 -4Qq, u= 

are satisfied (6 = 4-32 or 6 = 4-24). 

d =  60M, M = SaS/Q (3.4) 

+ 13 62'~Sa~, D=6S~ (3.5) 
56 / 

In the phase space, solution (3.3)-(3.5) of Eq. (3.2) corresponds to a heteroclinic orbit. 
Finally, let us briefly consider how the dynamics is affected by the dispersive effects in the case where 

the value of the parameter/~ is sufficiently small so that for D = 0, Eq. (3.1) has regular periodic solutions. 
The problem was studied numerically by the Galerkin technique with a number of approximating modes of 
the order of 5# [25]. Numerical calculations showed the following. 

1. Attractors of the Kuramoto-Sivashinskii equation (D = 0) of a unimodal steady-state form [11] are 
transformed into steady traveling waves with a single extremum on the spatial period. 

2. Within the range of values of it where the limiting regime for D = 0 is periodic pulsations between 
two steady states that are invariant with respect to 7r-translations [13], pulsating traveling waves can occur for 
sufficiently weak dispersion. The form of these wave formations is periodically changed: the first and second 
Fourier components dominate alternately. If the dispersion is relatively high, the limiting regime is a sequence 
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of traveling waves of constant form. 
3. Within the range of values of ~t where bimodal steady states [11] are attractors of the Kuramoto- 

Sivashinskii equation, the following types of behavior are established by numerical calculations: 
C a) traveling waves of constant form characterized by the presence of two extrema in the spatial period; 
(b) attractors of the form of traveling waves pulsating with time periodically; 
(c) trains of traveling waves with a single extremum on the period. 
Thus, the occurrence of dispersive effects extends the variety of limiting regimes for small values of the 

parameter/~ corresponding to the regular attractors of the Kuramoto--Sivashinskii equation. 
Conclus ions .  The essence of the physical mechanism proposed here for the development of longwave 

perturbations in a thin liquid layer is that variations in the internal energy of the liquid-gas interface cause 
corresponding variations in the temperature field in the vicinity of the interface, thereby inducing (or changing) 
the Marangoni stresses. The same feature is intrinsic to the thermocapillary mechanism considered in [19] for 
a liquid-liquid system. 

In the examined case of linear dependence of the surface-tension coefficient on temperature, the specific 
(referred to the interface unit area) surface internal energy is constant [17]. However, the internal energy of 
the interface can vary owing to surface area fluctuations. 

Let us consider whether the thermocapillary mechanism of perturbation propagation is realizable. The 
key parameter for the analysis is Mn E. This parameter expresses the comparative magnitude of the effects 
caused by the presence of surface internal energy and the Marangoni effect. It is known [1] that, usually, the 
value of MnE is small but at high temperatures, MnE = Oil  ) for most liquids. The value of Mn E also 
increases for low-viscosity liquids. In the case considered here, Mn E = O(e -1) and in [19], Mn E = Oil  ). 

Use of (1.10), as the condition of energy transfer through the free boundary, instead of the frequently 
used condition of the form 

kVO. n + b(0 - 0 g) = 0, x ~ F, 

where b(x, t) is the coefficient of interphase heat exchange and 0g is the controlled temperature at a point of the 
gas phase, can lead to known difficulties in performing experiments according to the mathematical formulation 
of the problem. However, in the case considered, where the basic state of the system is isothermal, this problem 
will not apparently be an obstacle" (see corresponding explanations in Sec. 2). 

The foregoing suggests that the physical mechanism considered here can be realized in practice for 
liquid-gas or liquid-liquid systems. 

In this connection, it is worth noting that the wave regimes of film flow observed in experimental 
studies can qualitatively correspond to solutions of simplified models similar to Eq. (2.15) over wider ranges 
of the determining parameters than is specified in the derivation of these models. 

In conclusion, we note two characteristic features of the influence of the examined thermocapillary 
effects on the wave regimes in a thin layer. In the approximation considered, the Marangoni stresses related 
to the variation in the internal energy of the layer free surface facilitate: 

(a) regularization of dynamics; 
(b) formation of wave regimes of the type of either irregular or quasiregular sequence of solitary waves. 
The author is grateful to V. K. Andreev for attention to the work. 
This work was supported by the Russian Foundation for Fundamental Research (Grant No. 95-01- 

00340a). 
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